Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae.
نویسندگان
چکیده
The two highly conserved RAS genes of the budding yeast Saccharomyces cerevisiae are redundant for viability. Here we show that haploid invasive growth development depends on RAS2 but not RAS1. Ras1p is not sufficiently expressed to induce invasive growth. Ras2p activates invasive growth using either of two downstream signaling pathways, the filamentation MAPK (Cdc42p/Ste20p/MAPK) cascade or the cAMP-dependent protein kinase (Cyr1p/cAMP/PKA) pathway. This signal branch point can be uncoupled in cells expressing Ras2p mutant proteins that carry amino acid substitutions in the adenylyl cyclase interaction domain and therefore activate invasive growth solely dependent on the MAPK cascade. Both Ras2p-controlled signaling pathways stimulate expression of the filamentation response element-driven reporter gene depending on the transcription factors Ste12p and Tec1p, indicating a crosstalk between the MAPK and the cAMP signaling pathways in haploid cells during invasive growth.
منابع مشابه
Systematic epistasis analysis of the contributions of protein kinase A- and mitogen-activated protein kinase-dependent signaling to nutrient limitation-evoked responses in the yeast Saccharomyces cerevisiae.
Cellular responses to environmental stimuli require conserved signal transduction pathways. In budding yeast (Saccharomyces cerevisiae), nutrient limitation induces morphological changes that depend on the protein kinase A (PKA) pathway and the Kss1 mitogen-activated protein kinase (MAPK) pathway. It was unclear to what extent and at what level there is synergy between these two distinct signal...
متن کاملA modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker's yeast.
Cells must be able to process multiple information in parallel and, moreover, they must also be able to combine this information in order to trigger the appropriate response. This is achieved by wiring signalling pathways such that they can interact with each other, a phenomenon often called crosstalk. In this study, we employ mathematical modelling techniques to analyse dynamic mechanisms and ...
متن کاملFilamentous Growth in Saccharomyces Cerevisiae
Fungal dimorphism is a complex phenomenon triggered by a large variety of environmental factors and consists of a reversible alternating pattern of growth between different elliptical and filamentous forms of cells. Understanding the mechanisms that regulate these events is of major interest because of their implications in fungal pathogenesis, cell differentiation and industry. Diploid cells o...
متن کاملHsl7p, a negative regulator of Ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway.
In the budding yeast, Saccharomyces cerevisiae, protein kinases Ste20p (p21(Cdc42p/Rac)-activated kinase), Ste11p [mitogen-activated protein kinase (MAPK) kinase kinase], Ste7p (MAPK kinase), Fus3p, and Kss1p (MAPKs) are utilized for haploid mating, invasive growth, and diploid filamentous growth. Members of the highly conserved Ste20p/p65(PAK) protein kinase family regulate MAPK signal transdu...
متن کاملcAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity.
Morphological changes in pathogenic fungi often underlie the development of virulence and infection by these organisms. Our knowledge of the components of the cell signalling pathways controlling morphological switching has, to a large extent, come from studies of pseudohyphal growth of the model organism Saccharomyces cerevisiae, in which control is exerted via changes in the intracellular cAM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 10 5 شماره
صفحات -
تاریخ انتشار 1999